§3. Widths

In this section we compute exactly the Kolmogorov and Gel'fand
widths and identify optimal subspaces for certain subsets of Lp( 0,1],
l<pgo. The normof fe L is denoted by ||f||p and p' is used
to denote the conjugate exponent defined by ;l + éf 5,

We begin by recalling the definition of Kolmogorov and Gel'fand
n-widths. Let X be a normed linear space, % a subset of X, and
)(n any n-dimensional linear subspace of X. Then, the n-width of %

relative to X, in the sense of Kolmogorov, is defined to be

d (U:;X) =inf sup inf Hx - y” ;
- Xn xe yeXn

and Xn is called an optimal subspace for ¥ provided that

d (¥4;X) = sup inf “x = Y”
n
Xe Y ye Xn

(WX ) .
n/

The n-width of ¥ relative to X, in the sense of Gel'fand, is defined as

dn(ll:x) = inf sup Il | y
L xeuNL
n n

where Ln is any subspace of X of codimension n. If

dwx) = sup x|,
xe N Ln

then Ln is an optimal subspace for the Gel'fand n-width of .

i




Our sets have the following form. Given functions kl(x), s ,kr(x)
defined and continuous on [0,1], and a kernel K(x,y) jointly continuous

in x,ye [0,1], we define

r 1
3.1) Y ak(x)+ [ Kix.yh e R" < 1%,
( s {;{laj ;) ‘g (x,y)h(y)dy : (a,...,a) e R, [ Np <1
The prototype of this class of sets is the choice kj(x) = xj—l, ol o o
1 -
and K(x,y) = m (x - y)Jrr 1. In this case Yr,p is simply the ball
(£=1) (r) .
= : . . < .
(3.2) 8 - (f:f abs. cont., [If Hp kD

In the general case, we will consider ,(r,p as a subset of Lq[ 0,1]
for some g, 1< g< %, and as such compute its Kolmogorov and Gel'fand
n-widths when certain additional hypotheses are satisfied.

For our purposes, in Section 4, where we study mixed (Lp,Lq)
approximation to K(x,y) by functions of the form (1. 3), we will only
need the results of this section when r = 0. However, for the sake of

(3.2) we deal here with r > 0 as well and require that the following

properties hold.

I
K xl’ gl xr+1’ ’Tr+m
1, s Ty yly ;ym
Rl snr R IRGE, Y ccv Kixg,yo)

ki(x )k (

1" r+m r me)K(

jars

Xrrme Y1 xr+m’ym)

18-




is non-negative for any points Ogy1 R ym_<_ 1 ngl SRR xr+m*<- 1

and integer m > 0. Furthermore, we require that for any given y-point
& < - < < oo < <1
0 < ¥ < < 1 1 (x - point, O X W ) the above

determinant is not identically zero for all x-points (y-points).

IL. {ki(x) }1 1 is a Chebyshev system on (0,1), i.e., for any B2 € i EX_ < "
= 15

In particular, when r = 0, Propertyl implies that K is a nondegenerate

totally positive kernel since Property I above implies that the functions
l((x1 s Rl ,K(xm,y),K(l ,y) are linearly independent on [0,1]. This
property is more restrictive than the requirement of nondegenerate total
positivity and we could relax the hypotheses I and II somewhat in what
follows. However, for us it is important that these properties hold for
the special case (3.2), see [ 12], and they shall always be assumed to
hold in this section.

3.1. Kolmogorov n-width, p =% ,6 1<qg<®.

Our objective is to find

d % . 190,1]) = inf sup  inf [if - gllq .
’ Xn fc!(r,oo ge Xn

¢

The computation of the n-width when q = ©® was done in [ 5]
and so we here restrict ourselves to considering q < @ .
We introduce the class

P =ik +Kn ¢ teA, 0<p<n, ke Qr} :
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where Qr : [kl s ’kr] ([ £o00e ,fm] = the linear space spanned by
f1 At ,fm). A typical element of Pn will be denoted by P or by Pt'

Thus if P h =k +
us tepn’ then Pt k Kht for some k ¢ Qr'

Theorem 3.1. Given integers m,r >0 and a number g, 1< g <, then there

exists a £ e i and k e Qr such that P, = k + Kh, satisfies

£ £
(3.3) poll < Ipl
” £ q~ lq’
sk
for every Pe P . Moreover, F"g has exactly m + r simple zeros in (0,1)
at 0<qyg. < -sc < 7 <1 and hence
1 m+r —
* g
(3.4) sgn P, (x) = (-1) h (x)
3 (N
1 * 1
(3.5) san(f [P, (x) [T h_(x)K(x,y)dx) = (-1)'h(y) ,
S - T 3
and
l %k l
(3.6) / IPg(x) & h_(x)k (x)dx =0, 1=1,...,r.

0

-

Note that when r =0, g =1, and m = n, this theorem reduces
to Theorem 2.1. The proof of the general case follows the proof of
Theorem 2.! with only slight modifications. The details require the

following generalized versions of Lemma 2. 2.

Lemma 3.1. For given m,r >0, Pe Pm has at most m + r zeros in

(0,1). If P has exactly m+r zeros at se Am+r’ then these zeros are

sign changes, the orientation of P is governed by the equation sgn P = (-l)rhq S

and P(l) # 0 .
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Proof. Let P =k + Kht’ keQ, teA . Assume P has at least r zeros
e ies r

{(otherwise there is nothing to prc;ve) and let s = (sl, ey sr), 0< 5) e & S, <l

Then it follows that P - Iht, where J(x,y) is the compound kernel

Now, the kernel T(x,y) = (-l)rhs(x)I(x,y) is totally positive, because

Sylvester's determinant identity tells us that if 0 < X SC e X, =il

0_<_yl<---<yl§1, then

T

XiseeosX) l,...,xr,yl,...,yf
YooY,

where ngl<---<z“r§l are the points of the set {Sl""’sr’xl""’xﬂ

arranged in increasing order. (Note that I(si,y) =0,1=1,...,r.) Now,

)

if P alsovanishesat 0<s A, <"**<s <1, (say s <s_.,),

+1 r+m

then {t follows directly from Lemma 2.1 and Property I that

(D' Th)00 > 0 for xe (s,,8, ), 4= L...,m, (h,)(1) # 0, and
(-I-ht)(x) >0 for xe (si’shl)’ i=0,1,...r. These facts immediately
imply the results of the lemma.

We need another lemma similar to Lemma 3.1 which also reduces

to Lemma 2.2 in the case r = 0.

P )




Lemma 3.2. Given te Ao and g(X) € LOO[O,l] such that sgn g = ht .

Jy
Assume that (g,ki):(), f= b, coiyl s Then m>f, and K g has at most

T
m-r zerosin (0,1). If Kg has m -r 2zeros at se A then the zeros

are sign changes and sgn KTg = (—l)rhS :

Proof. The fact that (g,ki) -0,i=1,...,r implies that g has at least
r sign changes is a well-known result obtained from the Chebyshev
property of {ki(x)]I. The remaining proof is quite similar to that of
Lemma 2.1. Assume (KTg)(si) =0, #+=1,...,m - r. Bince

kl(x), Se s ,kr(x), K(x,sl), wm g KA Xy sm~r)’ K(x,y) are linearly independent

for y e (0,1)\{s1, ive ’Sm-r}’ there exists a non-trivial linear combination

=

-r
biK(x’Si) + cK(x,y) such that u(x)ht(x) >0,

B4

) 4
u(x) = ), ak, (x) +
i-1 i-1

xe [0,1]. Since c(KTg)(y) = (u,g) > 0, it follows that (KTg)(y) +0

Ll

for vy e (0,1)\{51, ¥ ’sm—r} . It is easily shown, by determining the
sign of c, that sgn(K g) - (-1'h_ in (0,1).

We are now ready to prove Theorem 3.1.
Proof. The existence of a minimum PZ =k + th, where ¢ = (gl, e s ,t’;p),
0 < gl L SR gp <1, 0<p<m, follows directly. Using the minimality
of ¢ we have that

1
f 1P 197} sgn P (x)k (x)dx =0, 1=1,...,r
o ° & 1

and

¥

g(x)l((x,é,i)dx 0, 1=2h;..0,P¢

1
f IP*(x) |q—l sgn P
0 °©
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be the location of the sign changes of

let 0<r <22 ¢ <) K>y,
1 { =

Pg on (0,1). Then according to Lemma 3.1, £ <p +r, while

Lemma 3.2 implies that ¢ >p +r. Thus f =r+ p and by Lemma 3. 2,

sgn P:': = (-l)rh . Moreover, if p < m then the function P
5 @ g(e)

*
g(€) - (gl,...,gp,l-u may be compared to Pg for €« small and

positive to show, as in the proof of Theorem 2.1, that P;':(l) = 05 This

£

conclusion contradicts Lemma 3.1 and hence p - m.

We now turn to the computation of the Kolmogorov n-width of Vr o
’

Let r and g be as given, and apply Theorem 3.1 for each n >r

with m = n -r, to obtain points O<g1<"'<§ <l,O<Tl<"'<T <

I=r n

and a function Pa‘ which satisfies (3.3) - (3.6). Since P: plays a

£

distinguished role in computing the n-width of ’(r w We give it the
’

special designation grl (x). We will also use the notation gn(x)
:

for gn » q(x) suppressing its dependence on r and g . In addition,
¥

we define the n-dimensional subspace

0 ;
Xn = [kly"' ’kr’K(' ’gl)y' "’K("gn-r)]

Theorem 3. 2.

Tk 2
d 0 i L%0,1)) -

’ o I, nxr

0
and for n>r, Xn is an optimal subspace for the n-width of Vr o
’

Proof. Since the subspace Qr spanned by kl’ e ,kr is contained

in Yr’w, the n-width of ’(r’oo’ when n<r, mustbe . Now,
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suppose n >r. We will first prove that “gn ”q is a lower bound
for the n-width., We proceed as follows: the only n-dimensional sub-
spaces in contention for approximating ’(r » are those which contain

’

Qr' Let )(n be such a subspace and assume for the moment that q > 1.

Let Xn be spanned by the functions kl" b ’kr’ Uppeenyu
n-r+l >
For every =z - (zl""’zn-Hl) with Zi z, 1, we define
L, at
to(z) 0, ti(z) - L z,1=12,...,n-r+1 and fz(y) f(y;z) = sgn %3

j=1

tj-l(z) <y< tj(z), j=1,2,...,n-r+1. Note that fz(y) =+h _(y)

for some se A

K 0<k<n-r. Moreover, fz(y, -z) = -f(y, 2)

forall z and y. (This particular odd embedding of the surface of the
n -r+1 sphere into the set of extreme points of the unit ball in LOo
is used in [10] to simplify the proof of the Hobby-Rice Theorem [ 2] .)

The function KfZ has a unique best approximation in Lq[ 0,1]
{om the subspace Xn (because 1< g < o) which we denote by

I“ nf‘r
2 a (z)k, + %1 B (z)u, .

i=l
Thus the mapping (zl’ e ’Zn-r+l) - (pl(z), g ,ﬁn_r(z)) is a continuous
e B
odd mapping defined onthe n-r+1 sphere S — ZJ z;‘ 1}
i=]

Hence, by the Borsuk Antipodality Theorem (cf. [3]), thereisa z_ e S
for which pl(zo) =0,1i=1,2,...,n ~r. Moreover, by the definition

of 9, we have
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—

r
lo < ke - ¥ stz |
n gq z0 | ) 0 K (R

pd ”Kfzo - v“q

o1
for every function v e Xn. Letting q -1 we have, forall q,1<g<w»

”gn |l <  sup inf |If - v|
fes ve X
r, o n

’

Sk

Since Xn was chosen arbitrarily we obtain the desired conclusion,

o0
lg_ Hq <d 0 i L7[0,1]) .

The proof of the upper bound for the n-width requires

Lemma 3.3. Let O<§1<”'<§n~r<l’0< T s S 1) T the

points given by Theorem 3.1 corresponding to 9, Then

L ..,r,gl,. 3 .,gn_r

The proof of this lemma is similar to the proof of Lemma 2.3. We
omit the details (see [ 5], [6], and [8] for related results). Using this
lemma we define the unique linear interpolation operator 3 from clo,l1]
onto Xg by the condition that

(Sf)(ry) = f(r), 1=1,...,n.

We shall show that sup ”f - Sf ” < ”g ” and since
few q~ nq
Iy %

d o LY0,1)) < sup |If - sf ]Iq, this will prove the theorem.
’ fe ’(r,oo
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To this end, observe that if f ¢ X has the representation f
’

for some k e Qr and ”h ”uo <1 then

: Tp e e » T s X
1 h RFXTT) 6 e
f(x) - (SH)(x) - [ . . h(y)dy
0 2 Typ o0 v nn e ’» T
1’ ’r;gl) )gn_r/
Therefore
K Tl, WL g - Ve el & ’Tn’x
l ’ r’g b "g y q
sup M- seld< [ f . il Gy | ax
fe Yr,oo o\o e Tl, ....... ,'rn )
1) )r,gly' ’én_r
. Tp o e e » T X
bk r ®
yeov ey :519 ygn_r’y
= f f hg(y)dy dx
0 0 K 'T'I, ....... ,Tn)
l’ ’rygly' ’gn—r

and because gn =P, =k + Kh, for some ke Qr

3 3
o . q _ q
= llg, - 59 “q = llg llq ;
The last equality follows since gn(Ti) =0,1=1,...,n, and hence
Sgn = 0. Thus the theorem is proven.

We now turn to the computation of the Gel'fand n-width of i(r e
’

«26=
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3.2. Gel'fand n-width, p =%, 6 1< g< o,
The case q - © was done in [ 5]. We again assume that g < «
and define, for n >r, the subspace

Lg = {£:£¢ C[0,]], f(r,) =0,1i=1,2,...,n} .

0
Ln is a subspace of C[0,1] and since Sf =0, if fe Lg, the
proof of Theorem 3. 2 implies that

su f < llg Il .
w  llgs s,

fe Ln ’(r,oo
This inequality does not give an upper bound for the Gel'fand n-width
of ,(r e since by definition

’

(3.7) dn(,( oo;Lq[o,l]) =inf sup "f”q

r’
fie L0
o M

where the infimum is taken over all subspaces of L7[ 0,1] of codimension n.
Clearly, L?, does not fit this requirement. However, let us "smooth"

Lg slightly to
T te
Lz(e):{f:feLq[O,l],f fxjdx =0, £t =1,2,...,n} .
i
For &€ >0, ¢ small, define
1
£(x) - (S_£)(x) = | R(x,y:)h(y)dy
0

where

2=




1 n e e 50 ik
f j‘ K : 9 dﬂl dnn
Tl n l,' ,r9g19 9gn r’y

i) T +e T +e
1 (e L g o
1 e

1) Ear K do do_
T T 1,...,r,§1,...,gn_r

S(f is the unique element in Xg such that
Ti+e
f (-8 fix)dx =0, i=1,2,...,n.
s R
i
When ¢ -0, S =S and "Sef - Sf "q < max |R(x,y:e) - R(x,y:0)| [l “oo-
X,y

Thus
sup ||f”q < "gn “q + max [R(x,y:¢) - Rx,y:0)] .
0 X,Y
fe Ln(e)ﬂ,(r’w ’

The expression max IR(x,y;e) = R(x,y:O)l goes to zero as € — 0" and

X.yY

thus ”gn ”q does provide an upper bound for dn(x_’r :Lq[ 0,11}

o0
’

The fact that Hgn "q is a lower bound for the Gel'fand n-width is
proven in a fashion similar to the proof of Theorem 3.2. The argument
goes as follows: if Ln is a subspace of codimension n of Lq[ 0,1}

with sup l£ll <o, then L NQ = {0}. Thus if
felL Ny - SRy
n "'r,®

L ={f:fe L90,1), (u,f =0, 1=1,...,n),

where Upy.e0,u, are linearly independent functions contained in P [0,1],

then the matrix ((ul,k’)) has full rank r. We may assume without loss

of generality that det((ui’kj))i,j:l, e # 0. Setting
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K(x,y) kl(x) a8

(\ll,K(-’y)) (u,,k

1 e e () kr)

1

Kb,y (k) . (k)

) e (ul,kr)

(3.8) N(x,y) =
{ul,kl

(u,k) oo (k)

then fe Lnn’(r,w’ f.ie., £=k+¥he L, forsome keQ, "h"mgl,
if and only if f - Nh and (vi,h):0,1:r+l,...,n where vi:NTui.

Now, by the Hobby-Rice Theorem, [ 2], there is an hs, s = (s ) A

™
O<k<n-r, suchthat (v,,h )=0,1i=r+1...,n, Hence f =k+Kh e L

T 1 's 4 2 4 0 s n
for some k e Qr' Therefore we conclude by the minimality property of
gn that

lg | f s f :
gl < Il < s el

fe Ln Yr,w

Since Ln was an arbitrary subspace of codimension n of Lq[o,l], we

finally obtain
= I %
lo, g = d70c, iL7T0,10)
Incidentally, we may in the proof of the lower bound allow Ln to be
chosen from the larger class of subspaces of codimension n of C[0,1]

and still obtain the same result. Perhaps, it is best that we extend the

definition of the Gel'fand n-width to make this remark precise.

a2n




For a subset & of a normed linear space (X, ” “) and a set F
of linear functionals defined on 7 we let the Gel'fand n-width of
relativeto X and F be

d"@x,3) - inf sup x|

L xelL

n n
where L - {x:xeaq, Fix =0,1i-=1,...,n} and the infimum is taken
overall F......FP 3. If 3 X:; (norm dual of X) then from our

2 S
previous definition
n *® n
d @X,X)=d @X) .
Thus we may conveniently summarize our previous remarks in
Theorem 3. 3.

& q " q * My n<r
d (/Yr’m;L [0,1]) =d (’(r’w;L 10,31,C [0,1]) =

lbnh, n>r

O s,
and for n>r, Ln is an optimal subspace (of C*[ 0,1]) for the Gel'fand

n-width of Yr =

3.3. Kolmogorov n-width, l<p<®, q=1.

The case p =1 was previously done in [6]. Although p = » was done in Sub-
section 3.1 the following discussion also holds in this case. Thus we assume
1<p <» , For this problem we need

Theorem 3.4. Givenany n,r with n>r and p, l<p<®, there

exists an ne An such that for any t e An satisfying the condition

(3.9) (kj,h) =0, 1=1,...,r
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we have

T It
3.10) £r .= len ..
< I 0. < Ik 0

T
Moreover, t =n _satisfies (3.9)and Kh has exactly n -r distinct
1}

zeros in (0,1)at & e An . Hence

(3.11) SOnEh =ik
n g

The proof of this theorem is similar to the proofs of Theorems 2.1
and 3.1. We omit the details.

We are now ready to compute n-widths. Let us first define

1
X = [kl,...,kr,K(-,z_,l),...,K(»,t_.

)]

R=r

and

1
L ={f:feC[0,1],f(n) =0, 1=1,2,...,n} .

Theorem 3. 5.

1 o n<r
d 0. _:L[0,1]) =
BELw K™ Il ., nxr
np

and for n>r, Xi is an optimal subspace for the n-width of ’(r B
’

Proof. We first prove the lower bound. Let Xn be any n-dimensional
subspace of Ll[ 0,1] such that &0 X )<®, Then Q C X and
e r,p n r n

by the Hobby-Rice Theorem there exists a te A 0 <k <n, such that the

k’
norm one linear functional F(y) = (y, ht) annihilates Xn . Thus we conclude

that

«3]-




&( 0, su f.h
X, 0™ zf(’(p [(f, t)l
r,p

and keeping in mind that Qr (< Xn this simplifies to

_ T
o0, Xy 2 lx"n, Np.

v

'
”K h ” (R
n P
The arbitrariness of Xn implies that the desired lower bound is valid.

The reverse inequality requires

Lemma 3. 4.

| BoaR ,r,gl, S ’gn-r
The proof of this lemma is similar to that of Lemma 2. 3 (see [5], [6], and
[8] for similar results). Therefore we may define an jnterpolation operator

T: C[0,1] -~ XL by the conditions
(TH)(n,) = f(ny), i=1,...,n.

Then as in Theorem 3.2, if f =k + Kh, ke Qr’ IIh ”pg 1, we have

£(x) - (TE)(x) = [
0 K T\l, ....... y M

and
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1
Pt P
K(np ....... ,nn,x
J 1 1," 9r)§ ’ )4 Y
sup If - Tf ”l % J f : ot dx | dy
fe ’(r,p 0{o K(nl’ '''''' > Ay )
17‘ ’ryély ,én_r
L
< p'
inl, ....... ,'r]n,X
! 1 ly’ ’r)g ’ ’g Y
= f f : Hak h (x)dx dy
0 0 v 1']1, ...... » "
l’ ’r’gl) ’gn_r
Since (ki’hq) =0, =k, ek, and (R L3R V=0 1512 ...,0~1,

the above simplifies to

T
sup llf-Tell, - lk'h ||, .
fey 1 n P
r,p

Thus

d_o¢, :Ll[O,l]) - sup |lf-Tf Hl = ”KTh §a
’p f(’( ‘1 p
r,p

Finally, we have

3.4. Gel'fand n-width, l<p<® q=1.

Again p =1 was done in [ 6] while p = © is included in Subsection 3. 2.
We assume here that 1 < p < =,

Theorem 3.6.

e n<r

n 1
d o _:L[o,1]) =
Tebeg o Ik 1l ., n2x
n P

and for n>r, L:‘ is an optimal subspace for the n-width of X, b’
’
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1
Actually (see the proof of Theorem 3. 3) Ln is a"nearly" optimal
subspace.
Proof. The upper bound

T
sup Hle < sup |f —Tfﬂlg Ik hn"P"

f
fe Llﬂ\( e’(r,p
n D

follows from the proof of Theorem 3. 5.
For the lower bound, we let Ln be any subspace of finite codimen-
sion n of Ll[ 0,1] such that sup I|£ ”l < ©, Hence

n
fe Ln ’(r,p

1 :
LnﬂQr: {0} and L ={f:felL70,1], (u,f)=0,1=1,...,n}

o0
for some linearly independent functions Upeee,U € L [0,1]. Let

T
N(x,y) be as defined in (3.8) and set v, - N u,- ‘The lower bound

argument given in Subsection 3.1 may be modified to prove that there

is an s (sl,...,sk), 0 <k <n, such that (ki’hs) =z L=1,..,,r and
n
T T 3
llx hs”p‘ E min ”K h - Z aivi ”p' ‘

@ g%y i=rt+l

To accomplish this, let f (x) be as in Subsection 3.1 for
n+l

n 2 ) :
zeS :{z:(zl,...,zml): 2—_,21:1}. For l<p'<o, let
aHl(z), o ,an(z) be the unique coefficients in the best 4 approxima-

tion to Ksz from the subspace spanned by Vot oVpe We define
an odd, continuous mapping of s" into R" by z- ((kl,fz), fu ’(kr’fz)’

ar+l(z), A ,an(z)) and again apply the Borsuk Antipodality Theorem and

"




n :
obtain a Z € S~ for which (ki’fz bml b el i, T, ai(zo) =0,
0
t=r+1l..:,n Then hs : :tfz serves our purpose.
0

. T
P approximation to K hs by the subspace

Since the best L
spanned by Ve Vi is zero, we necessarily have the orthogonality

it e
relations (g,v,) =0,i=r+1,...,n where g =sgnKh IKTh lp . :
’ i ’ S s

Let w g/”g”p. Then w e Lp[O,l] with ”w”p:l and fO:Nwe Lnnvr,p

(see the discussion in Subsection 3.2). Hence

sup llfll llf Il 1)
fe L Ny a8
R

and because (ki,hs) =0,1i=1,...,r, we have

T T T
- = h ;
K'ngyw) = KT > 1K,

4,
Letting p'—~1 completes the proof.

As was indicated, the prototype for the class of sets considered in this

j-1

section is k,(x) = x (x-y)i'1 since, in

j

this case, Xr D is simply a ball of the Sobolev space. We specialize below
b

1
y J=Ltio,r and K(X’Y):(r-l)!

the results of this section for this specific class of functions.

Definition. A perfect spline on (0,1] of degree r with m knots

m
{gi}m, 0=¢, < gl ok gm < gm“ =1, 1is any function P(x) of the form

r- i m j §j+1 1
P(x) = Z a,x tc ? (-1) f (x- y) >
i=0 j=0 gj

r r
where, as usual, X,=x 1if x>0, and zero otherwise.
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Let pm denote the class of perfect splines of degree r with at most m

(r)

knots with |P"/(x)| =1 a.e. on[0,1], and let Qm = {P: Pe P

P(i)(O) = P(i)(l) =0, 1i=0,1,...,r-1} . Theorems 3.1 and 3.4 reduce to the
following

Corollary 3. 1. Let 1< p< o, E.rl‘i Pm, . € Pm be any perfect spline which
attains min Pl . Then P has m distinct knots in (0,1), and
g p — m,p — S

exactly m +r zeros in (0,1), each one a sign change.

Corollary 3.2. Let 1<p<® and m >r, and let Qm g € Qm be any perfect

’

spline which attains min ||Qll . Then Q has m distinct knots in
QeQ p T m, p

(0,1) and exactly m -r :?elzros in (0,1), each one a sign change.

Let 8 5 {f. f(r'l) abs. cont., || f(r)”p <1} . Then from Theorems 3.2

’

and 3. 3 we have

Corollary 3. 3. For 1<g<w>,

T S - -
d 8, i L[0,1) =d" (B, ; L[0,1]) =

e, g n2r

and for n>r ,

0 r-1 r-1 r-1 n-r
H X = (L%, .oy x 7y (X-€), -y (x-§, ), ], wherethe {gi}i:l

are the knots of P
n-r

-

7 is an optimal subspace for the n-width dn .

i1) L0 = {f: fe C[0,1], f( Ti) =0, i=1,...,n}, where the {Ti}? , are the
n —_— =] —
sign changes of P e, q is an optimal subspace for the n-width dn :
i

From Theorems 3.5 and 3. 6, we have
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Corollary 3.4. For 1<p<wx»

’

0 Fb ey

1 n 1
dn(@r’ o L[o,1]) =d (@r’ 4 L[0,1)) =

-~

o, ol n>

where =1, and for n>r

1 | ral =

1 n-r
A X (- L) e (x-8 )], where the {gi}i:l

are the sign changes of Qn D is an optimal subspace for the n-width d
’

5 X

1]

ii) L; = {f: fe C[0,1]), £ n)=0, i= l,...,n}, where {ni}?_l are the

knots of Qn D’ is an optimal subspace for the n-width a" .

Note that by setting g =1 in Corollary 3.3 and p = in Corollary 3.4,

it follows that || Pn~r,l”l = “Qn, l"l and the knots of Pn

sign changes of Qn

S may be taken as the

1 and vice versa.
’

e




§4. Mixed (Lp,Lq) Norms

Let
1 1 L R
K|  (f IKx,y)Tdy)ax)®

l<g<o, If g=o and/or p = o, thenlthe usual

definitions apply. We use, as before, the pairing (u,v) f u(x)v(y)dy

where 1< p < ®,

! 0
for u e Lp, Ve Lp,-l+ -l-Trl.
: P p
We study
n 3 p
s K) = inf{ |K - : ok
(4.1) By qK) - in (| 12:1 uisvilp,q v, .., e L7[0,1],
q ]
Visrroa¥ e LYM0,1} ,
where
(ui® vj)(X,y) = ui(x)vj(y) )

and shall make use of the results of Section 3 with r = 0. For convenience,

% shall be denoted b . Thus
0.p % ’(p

’

= {kh : ||h 4
B ! I Ilpsl}

Also, let

R :
’(p - {Kh.”h”pslj.

Theorem 4.1.

4P T .4 =K
max{d, 0 L0, 10),d 0 LT[0, 1))} < B ((K) .
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Before proving this theorem let us observe that the above n-widths,

when n - 0, are given by
d o LPro,1]) =d oL 0,1])
0 qn' ’ 0 pn ’

- sup |xn]
Inl <1 .
q

= ilxllp’q.

The right-hand side is the operator norm of K as an integral operator

acting on A [0,1] into Lp[ 0,11. Now, by Holder's inequality, for

heL9(0,1], ge LP[0,1]

1.1
(4.2) lkn,0)) = |f [ gxK(x,yh(y)dxdy |
0 O
1 1 =
<J gl Ikee,y)%ay)%axinll ,

0 0
K h .
< | lp,qligllp,ll Hq.
Thus since
sup |(kn,g)| = IIKIl_
Inll <1 s
<1
lall . <
we have
0
K K A K
Ikl o< Ikl o =20

which proves the theorem for n = 0.
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Now, for general n we prove the theorem by returning to (4. 2)

to see that for u EEFL S Lp[O,l], v

q
1 .,vneL[O,l]

3’

-0 ool k- ) wovl lnllal .

i=1
Thus we have
Ikn - }_,u(vh IK-ZU®VI ”h”.
i=1 q
and
T I a
Ix"g - 1%1 vi(ui, g) ”q & K- Z:l]_ u, ® vy lp,q g ”p'

The first inequality implies that
g e 1 K
nq ="p,q
while the second gives

T . q n
d L[ O .
oL 0,1) < BT (k)

’

Therefore Theorem 4.1 is proven for all n.
It is hardly surprising that this inequality is not always sharp. The

basic comparison (4. 2) between "K” and [K| relies on two

P,q pP,q
applications of Holder's inequality which certainly eliminates, for all
but special choices of p,q and kernels K(x,y), equality from occurring.
A particularly striking example of this occurrence is the case pEg=2,
We have already mentioned that E, Schmidt showed that

1
(x)-(Z )2
Z 2 n+l j
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However, the lower bound from Theorem 4.1 is merely

1

8.2 2 ! ;
NE,p = d0L[0,1]) = d 0L 0,1]) .

Nevertheless, we have

Theorem 4.2. Let K be a nondegenerate totally positive kernel. Then

forany n>0,1<pg®

1P 2 ool et
an(w,L [0,1]) = dn(9(p|.L[O,l]) 'Ep,l(K) g
Moreover,
n
E, 1K) |E| 1
where
X,T g " 95
K 1 2
. R y’él’.”’gn
(x,y) =
; T Ty
gl""’gn
and gl,...,gn, Typeees Ty are obtained from the function gn,O,p

given in Theorem 3.2 where r =0 and ¢ is replaced by p. Furthermore,

i 1
{u;)(x));1 and {vi (y))f, as defined in Theorem 2.2 with respect to

the above {E,i}? and {Ti}?, are an optimal choice in the solution of (4.1).
Let us observe that for any kernel ”K”oo y lKlw 1 Thus when
’

p = ©, the above theorem is proved in [5]. Note, however, that for

p<®, "K"p,l is not always equal to lKlp 1

’
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Proof. At this point, we have accumulated sufficient information on

widths so as to facilitate the proof of this result. We observe that for

l<pgwo
n
ED,I(K)S lElp,l
¥ o 51
(f (f IEx,y)ldy)Pdx)
g @
G 4
 f E(x,y)hg(y)dyl)pdx)p.
0 0
1
Furthermore, since 0 9, O,p(Tl) = f K(Ti,y)hg(y)dy, b=l 2.0 ,0,
? 0 .
we have

1

1 1 =

- S K(x,y)hémdyhpdx)p
0 0

= llg I

n,0,p p
We now invoke Theorem 3.2 for r = 0, and g replaced by p to
conclude that dn(i(oo:Lp[ 0,1]) = "gn,o,p ”p Hence equality is achieved
T =1
in Theorem 4.1 and, in addition, an(p.:L [0,1]) < "gn,o’p ”p

However, from Theorem 3.5 (with r = 0, p replaced by p', and K

by KT), it follows that

dtto,n) = b 1= lla, o Ul

This last equality follows from the definition of "g 0 Il .
n,0,p p
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